SHOCK RADIATION RECOMBINATION AS A
DIFFUSION PROCESS

A. G. Zimin UDC 533,72

The quasistationary process of shock radiation recombination is described by a stationary
diffusion equation which is solved under the assumption of a constant current and taking
account of the exact dependence of the diffusion and drift coefficients on the number of the
atomic energy level. A comparison is made with the results of other authors obtained by
other methods.

The recombination rate is defined by the resultant rate of electron capture by ions and can be found
only by taking account of the kinetics of filling the atom (ion) levels.

Since single-electron processes predominate, the atom (ion) formed at any time as a result of elec-
tron capture can be considered as a single-electron system, and the plasma, correspondingly, can be
characterized by statistical single-level amplitudes, the relative concentrations oy, = Ny, /N, where Nigp

is the concentration of ions with the charge k=0,1,2,..., 2 inthe staten=1,2,... ,N= :Z Nkp, is the

total concentration of all the ions. The charge distribution is determined by the charge amplitudes o

= ; ayp. The degree of ionization o (the number of electrons per ion) is the first moment of this distri-

bution

o= ; ko, = kE ko, (1)

Conservation of the total charge is equivalent to normalizing the amplitude:

kzakn. = ;O{k:—‘l. (2)

For the single ionization considered below, k = 0 and 1, which cannot be considered excited ion states
under the single-electron processes conditions (this is dictated by the transition matrices kn == k'n') so that
taking account of (1) and (2), we obtain

-
a1:}daln:a:1'a0:1_2a°7l' (3)

n n

It is convenient to represent the kinetic equations for the distribution of g over the atom levels as

c

(4)

£

é‘on = 2 (Kz: Con’ ——KZ'(ZOR) TG Gn= Ky (AOL aOn) A=

QI

The summation is here performed over all states n' interacting with the central state n. For con-
venience, the transitions in the continuum and back (n = «) are isolated, where the capture rate K2 @ (a
ternary process) is expressed in terms of the ionization rate (a pair process) by using the principle of de-

tailed equilibrium. Here « and aon are equilibrium quantities defined by the Saha and Boltzmann formulas.
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The transition rates over the discrete levels Kg‘ (n —n') are represented by the sums of the electron Kg‘
T .
and radiation Kg' transition rates (recombination in an optically thin plasma is considered here). For
hydrogen-like atoms we have (see [1], for example)
ermn’ — xyno B, (Xun') ,
¥ —n T2 (5)

n' >n, nnr = (02— n""IT,;

KT = 9. 107N T2

K& = 04 100 NT 2 In2 [ — 0 E, (x)], Xn = 1/T 0% (6)
Ky = 1,610 (> — '™, 0’ O {n
£ 9 e,
Kh= (J—l,—) e Ky, n'>n. (8)
n

The last formula has been obtained by using the principle of detailed equilibrium. The energy and

temperature are in eV in all the formulas, and Eo ) = 5 e *dx /x is the exponential integral,

x

Analysis shows that the electron and photon processes can be represented sufficiently accurately
by transitions just between adjacent states [2], i.e., by the transitions n==n = 1, In this case the diffusion
method is represented by the following equation [2]:

Tplgn = %gn =

. 0
n'y‘on> It (Una{)n) + qr.- (9)
on

This hyperbolic diffusion equation describes diffusion at a finite rate X, = E K%’ = 751 (sec™!) and

goes over into the Fokker — Planck parabolic diffusion equation as K, == (tp — 0), where 1y is the expec-
tation time of the transition from the state n. The diffusion Dy and drift Up (the mean velocity of motion
along the n axis) coefficients are expressed in terms of the transition velocities K,[1 = k{nH and K = 1{““*
ahead of and behind the n axis by the following formulas

Dy = (K + Ka), U= Ki - K. (10)

Differentiating (3) we obtain
&= — D (11)

It hence follows that the ionization — recombination process is essentially nonstationary (a = 0 follows
from ag, = 0) and can be described correctly only by the nonstationary system (4) or by representing it by
the diffusion equation (9). Under quasistationarity conditions, when the rate of filling the ground level
(n = 1) is low, the recombination process can be described (approximately it is understood) by the stationary
diffusion equation

Oy
on

In this case the population of the ground level can be considered an equilibrium {Boltzmann) popula-
tion: ’

== (Dna’()n)” — (Unaon), = —{y. (12)

Do (’l = 1) = &on (P’L = I) (13)
This expression is the boundary condition for (12).

The representation of ternary recombination by a stationary diffusion equation of Fokker — Planck
type was fxrst realized by Pitaevskii [3, 4], however, he used the limit expression for the diffusion coeffi-
cientDy ~ n!, which is applicable only for highlevels (n >>n=(1/ Te)l/ %), or for comparatively low temperatures
and high densmes The diffusion method described above affords the possibility of using exact dependence of the
drift and diffusion coefficients on the number of the atom energy level n and of therefore obtaining the
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recombination coefficient for any temperatures and densities. It should be emphasized that the radiation
transitions essential for recombination (in the problem formulation under consideration) were used by
Pitaevskii in the form of the boundary condition oy, = 0 in place of (13). This is possible only in the strong
recombination mode (A > 1), however, the quasistationarity condition can be spoiled for large A.

Since the oppositely directed capture K3 and ionization Kﬁ rates grow abruptly with n, a quasista-
tionary ionization equilibrium is set up at the upper levels. Setting g, = Kg (A&on—ozon) = 0, we obtain the
second boundary condition as n — oo

P

%on : Aaon; A= ;:; (l‘L——+ oo) (14)

(the quasistationary distribution is a Boltzmann distribution &On at the upper levels since the transition
velocities at sufficiently high levels are determined only by electron processes).

The expression (14) is applicable in practice forn >n = (I /Te)1 ~,

It is possible to simplify (12) if it is taken into account that the source qy is located at the upper
levels (n 2 n) and the fundamental electron time is expended in motion at the low levels. This affords a
_ foundation for not considering the source distribution g, = q(n) but o concentrate it at the upper levels (n > r_1),
i.e., actually to combhine it with the upper boundaries. If the source makes the transition to the boundary,
then we should set g, = 0 in the equation. In this case the current over the levels turns out to be constant,
i.e., jn = —(Dptgn)' + Upagn = j = const and we obtain a first-order equation in place of (12) which it is
convenient to represent as

Bé" - ﬁOnB(,M /gon = -.’ . (15)
in terms of the variable
ﬁl)n = CLOHDH’ (16)

and the solution Bon of (15) for zero current (j = 0) with the boundary condition Bon = Bon 88 0 — o,

The solution of (15) with the above-mentioned boundary conditions is

Boo = Bon [ [ B, ] an

n

where

f:—m—n/§M@n (1s)

o

is the total (effective) current. Under quasistationary conditions, the lower limit can be extended to
ny = 2, and even to ny = 1 for constant current.

Pitaevskii obtained a solution of an equation of the type (15) with j = const and for A > 1 (under strong
recombination conditions). As is easy to see, his solution corresponds to neglecting the ionization current
(the second member in (18)) or the boundary conditions cy, = 0 for n = n, in place of the more common (13),
It should be kept in mind that separation of the current into ionization and recombination currents is im-~
possible in the general case for finite A.

The solution (17) is more general. The dependence on the density is contained therein in terms of the
drift and diffusion coefficients (taking account of the radiation transitions in exact form). It is applicable
down to the lowest levels because of taking account of the dependences of the diffusion equation parameters
on n exactly, which is quite important, as will later be clear, since such levels for which it is impossible
to use the limit expression of the diffusion coefficient (as n — =) yield a contribution to the recombination
current,

The results of a computation are presented in Fig. 1 in the form of the ratio v = gp /S between the
recombination coefficient Bp obtained by Pitaevskii as Ny — = and with the limit dependence Dy ~ n* and
the recombination coefficient BT obtained by means of (18) with the exact dependence of D, on n and taking
account of the radiation transitions. Such a mode of representing the results is convenient in that it does
not contain a numerical factor in the diffusion coefficient (upon agreement of the coordinate dependences of
the expression presented here and the classical expression for the Pitaevskii diffusion coefficient as n — «,
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Fig. 1. Temperature dependence of the correction factor to the
Pitaevskii recombination coefficient. The curve ¥ corresponds
to the quasistationary distribution o and the curve v to the
Boltzmann distribution. The dashed curves are the appropriate
Bates results.

the numerical facter in this latter is divided by four). The graphs represent the temperature dependence
¥(Tg) for diverse fixed electron concentrations Ng = oN (N is presented in the units 106 cm ™2 so that Ny

= N-1071%), The Pitaevskii result corresponds to the limit N —« and is realized in practice for Ny 2 103,
The ratio between the recombination coefficient obtained by means of (18), with the quasistationary dis-
tribution &on replaced by a Boltzmann distribution &on applicable for a dense plasma, is presented for the
same concentration values for comparison. The corresponding curves are denoted by v;. The magnitude
of the current depends on the population oy, and the diffusion coefficient Dy,.

The recombination coefficient obtained by the method considered here turns out to be less than the
Pitaevskii value. It is essential that the recombination coefficient remain approximately one-half the
Pitaevskii value even at comparatively low temperatures (T ~ 0.1 V) when the diffusion method is ap-
plicable in the Fokker ~Planck form. This difference is due to the application of the limit expression for
the diffusion coefficient (Dy ~ n*), which is suitable only for high levels (for n > n? /3) while the domain
n < n in which the exponent is on the order of one yields the main contribution to the current integral. This
circumstance is illustrated in Fig. 2, where it is shown how the current integral (sum) s; is collected at the
upper limit n. The curves s, yields the Pitaevskii integral for the same values of 8 = x;. Let us note that
the maximum of the integrand in the Pitaevskiiform holds for n = n/v3 < n, which indicates the inappli~
cability of the limit expression for the diffusion coefficient. As a rule, up to 90-95% is collected up to 90-
95% for n < t—l, and s, up to 85-90%. As an estimate shows, the limit expression for the diffusion coefficient
can be used only at the temperatures Te < 100-150°C (the estimate of the level range is given above).

The dashed curves in Fig. 1 illustrate the Bates results [5] obtained by numerical solution of the sys-
tem of kinetic equations (4) with a finite number of levels (quasistationary version). These results have
been obtained with a different expression for the transition velocity, hence for comparison they are normal-
ized to the value obtained here for Tg ~ 1 eV, where the correction coefficient turns out to be on the order
of 1. The maximum values of the correction coefficients agree, in practice, for all concentrations, and the
positions of the maximums diverge somewhat. Quasistationarity is spoiled for Te > 0.7 &V so that the
recombination coefficient is not representative in this domain.

It is interesting to note the following, The exact expression for the current in the stationary model
is obtained from (12) as

ESS

jn:'_j‘qnd”': aj‘ K’T (A&On_ocon) dn. (19)

n

For the total capture rate we obtain

q:

[

[(:(ACZOn - CLOn) dn = — ]n (”’0)' (20)

~
&

4
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Fig. 2. Dependence of the current normalized to one on the
upper limit of the integral (sum). The curve s is the integral
in the form (18) while the curve s, is the Pitaevskii integral.
B=1/Te.

Since the contribution to the current is slight for n » ;., let us limit ourselves approximately to
integration to n = n, which Hinnov and Hirschberg [6] used to evaluate the recombination coefficient by
means of the formula

n
ree=\ Kidagdn (21)

flo
with the integral also replaced by a sum at the lower levels. Their results for a dense plasma agree with
the Pitaevskii results to the accuracy of a numerical factor of ~0.5. Although it is impossible to consider
such results sufficiently exact (the model selection of the upper limit), their method yields a numerical
result which practically agrees with that obtained here (in the dense plasma limit), Let us emphasize that
the agreement between the temperature dependences of the recombination coefficient in the Hinnov —Hirsch-
berg and Pitaevskii methods (the formulas for the computation are completely different) is random and
related to the specific dependence of the diffusion coefficient on n (D, ~ n%) and the ionization rate Ky ~ n’
(the exponents in these expressions just influence the numerical factor).

The fact that the expression (18) for the current differs in form from the exact expression (19) sug-
gests the need to solve the exact stationary (second-order) diffusion equation in place of the approximate
(first-order) equation. However, because of the modeling of the stationary problem it is not clear in
advance whether the results are improved.

Let us note that an attempt to correct the Pitaevskii results by a summation over discrete levels
(for extension to high temperatures) was made by Biberman et al. [7], where only the transitionn=1<=2
was realized. It is impossible to extend the current integral in the Pitaevskii form (even represented as a
sum) to the low levels for the reasons mentioned above, hence, the mentioned correction is qualitative
(interpolational) in character.
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