
S H O C K  R A D I A T I O N  R E C O M B I N A T I O N  

D I F F U S I O N  P R O C E S S  

A. G. Z i m i n  

A S A  

UDC 533.72 

The quas is ta t ionary  p rocess  of shock radiation recombination is descr ibed by a s tat ionary 
diffusion equation which is solved under the assumption of a constant cur ren t  and taking 
account of the exact  dependence of the diffusion and drif t  coefficients on the number of the 
atomic energy level. A compar ison  is made with the resul ts  of other authors obtained by 
other methods.  

The recombination rate is defined by the resul tant  rate of e lectron capture by ions and can be found 
only by taking account of the kinetics of filling the atom (ion) levels. 

Since s ingle-e lec t ron  p rocesses  predominate ,  the atom (ion) formed at any time as a resul t  of e lec -  
t ron capture can be considered as a s ingle-e lec t ron sys tem,  and the p lasma,  correspondingly,  can be 
charac te r ized  by s tat is t ical  s ingle- level  amplitudes,  the relative concentrat ions C~kn = N k n / N ,  where Nkn 

is the concentrat ion of ions with the charge k =  0 , 1 ,  2 . . . . .  z in the state n=  1, 2 , . . .  ,N = ~ NkniS the 

total concentration of all the ions. The charge distribution is determined by the charge amplitudes o~ k 

= ,,~/ ~kn. The degree of ionization ~ (the number  of e lectrons per  ion) is the f i rs t  moment  of this d i s t r i -  

bution 

k kn 

Conservation of the total charge is equivalent to normalizing the amplitude: 

%,, : ~ a h - ' l "  (2) 
kn k 

For  the single ionization considered below, k = 0 and 1, which cannot be considered excited ion states 
under the s ingle-e lec t ron p rocesses  conditions (this is dictated by the transit ion ma t r i ces  kn ~ k 'n ' )  so that 
taking account of (1) and (2), we obtain 

% =  :,-Z%,. (3) 
n 

It is convenient to represent  the kinetic equations for the distribution of C%n over the atom levels as 

�9 ~ n '  n" O52 
(Kn, ao,~, --K,~ ao~) + G ,  q,~ = K~(Aao,  ~ - -  ao,~), A - _ (4) 

n" C62 

The summation is here  performed over all states n' interact ing with the cent ra l  state n. For  con-  
venience,  the t ransi t ions in the continuum and back (n ~ ~) are  isolated, where the capture rate K~ (a 
te rnary  process)  is expressed in t e rms  of the ionization rate (a pair  process)  by using the principle of de-  
tailed equilibrium. Here ~ and a0n are  equilibrium quantities defined by the Saha and Boitzmann formulas.  
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The t r ans i t i on  r a t e s  o v e r  the d i s c r e t e  l eve l s  Kn n~ (n ~ n ')  a r e  r e p r e s e n t e d  by the s u m s  of  the e l e c t r o n  K n 

and rad ia t ion  ~(n' t r ans i t i on  r a t e s  ( r ecombina t ion  in an opt ica l ly  thin p l a s m a  is c o n s i d e r e d  here) .  F o r  "~n  

h y d r o g e n - l i k e  a t o m s  we have (see [1], fo r  example)  

e e xnn' - -  Xnn, E e (xnn'] 
K~ = 2. I O-~aNT~ -u2 

nSn,3 (n-2 _ _  n,-~)~ 

n '  > n ,  x ~ ,  = ( n  -~  - -  n ' -2)  I /T~;  

!~'ff = 2,4- l O-~aNTe 1'2 Itz"- [e -x~ -- .v~E~ (x,~)], x a = I/Ten2; 

(5) 

(6) 

r 
" n "  K~ = 1,6. 101~ 2 - n ' 2 )  -1, n' -x n; (7) 

e e 
] i n , = (  n ~2e ~nn" ~n" n' .n K~, > n .  (8) 

The las t  f o r m u l a  has  been obtained by us ing the p r inc ip le  of  deta i led equ i l ib r ium.  The e n e r g y  and 

t e m p e r a t u r e  a r e  in eV in al l  the f o r m u l a s ,  and Ee(x) = i' e - X d x / x  is the exponent ia l  in tegra l .  

Ana lys i s  shows that  the e l e c t r o n  and photon p r o c e s s e s  can  be r e p r e s e n t e d  suff ic ient ly  a c c u r a t e l y  
by t r an s i t i ons  jus t  be tween ad jacen t  s t a t es  [2], i .e . ,  by the t r ans i t i ons  n ~ n • 1. In this ease  the diffusion 
method  is r e p r e s e n t e d  by the fol lowing equat ion [2]: 

" "  " = d'z ( D  a ~ ~ d__~(U, ,%, , ) .+_ q~. "rnCtOn @- ~on 01Z~ ~ n o;w ~ ~ (9) 

This  hype rbo l i c  diffusion equaLion d e s c r i b e s  di f fus ion at a finite r a t e  K n = "~, K n' = "r~ 1 (see -i) and 

goes  o v e r  into the F o k k e r -  P lanek  pa rabo l i c  d i f fus ion equat ion as  K n - - ~  (r n - - 0 ) ,  w h e r e  r n is the e x p e c -  
ta t ion t ime of the t r ans i t i on  f r o m  the s ta te  n. The di f fus ion D n and dr i f t  Un (the m e a n  ve loc i ty  of mot ion  
a long the n axis) coef f i c ien t s  a r e  e x p r e s s e d  in t e r m s  of  the t r ans i t i on  v e l o c i t i e s  K + = K n + l  and K n = K n <  

ahead of  and behind the n axis  by the fol lowing f o r m u l a s  

1 (K-~@ K2), U.=Ken - -  K 2 .  (10) D~=~ 

Dif fe ren t ia t ing  (3) we obtain 

& = - -  ~&o.. ( 1 1 )  
n 

It hence follows that the ion izat ion-  recombination process is essentially nonstationary (~ = 0 follows 
from C~0n = O) and can be described correct ly only by the nonstationary system (4) or by representing it  by 
the diffusion equation (9). Under quasistationarity conditions, when the rate of filling the ground level 
(n = I) is low, the recombination process can be described (approximately it is understood) by the stationary 
diffusion equation 

&t - (D'~a~ --  (U,~%~)' = - -  q~. (12) 

In this case the population of the ground level can be considered an equilibrium (Boltzmann) popula- 
tion: 

c%,~ (n = 1) = ~0~ (n = 1). (13) 

This  e x p r e s s i o n  is the boundary  condi t ion  f o r  (12). 

The r e p r e s e n t a t i o n  of t e r n a r y  r e c o m b i n a t i o n  by a s t a t i ona ry  diffusion equat ion of F o k k e r -  P i anck  
type was  f i r s t  r ea l i zed  by P i t aevsk i i  [3, 4], howeve r ,  he used the l imit  e x p r e s s i o n  f o r  the di f fus ion coeffi .-  
c ient  D n - n 4, which is appl icable  only for  high leve l s  (n >> ~ = ( I /Te ){2 ) ,  o r  fo r  c o m p a r a t i v e l y  low t e m p e r a t u r e s  
and high dens i t i e s .  The d i f fus ion  method  des c r ibed  above af fords  the pos s ib i l i t y  of  us ing  exac t  dependence  of the 
d r i f t  and di f fus ion coef f i c ien t s  on the n u m b e r  of  the a tom e n e r g y  level  n and of t h e r e f o r e  obtaining the 
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r e c o m b i n a t i o n  c o e f f i c i e n t  fo r  any  t e m p e r a t u r e s  and d e n s i t i e s .  I t  should  be e m p h a s i z e d  tha t  the r a d i a t i o n  
t r a n s i t i o n s  e s s e n t i a l  f o r  r e c o m b i n a t i o n  (in the p r o b l e m  f o r m u l a t i o n  u n d e r  c o n s i d e r a t i o n )  w e r e  used  by 
P i t a e v s k i i  in  the f o r m  of the b o u n d a r y  cond i t i on  Son = 0 in  p l a c e  of (13). Th is  i s  p o s s i b l e  only  in the s t r o n g  
r e c o m b i n a t i o n  m o d e  (A >> 1), h o w e v e r ,  the q u a s i s t a t i o n a r i t y  cond i t i on  can  be s p o i l e d  fo r  l a r g e  A. 

c o  
Since  the  o p p o s i t e l y  d i r e c t e d  c a p t u r e  K~ and i o n i z a t i o n  K n r a t e s  g row a b r u p t l y  wi th  n, a q u a s i s t a -  

t i o n a r y  i o n i z a t i o n  e q u i l i b r i u m  is  s e t  up a t  the uppe r  l e v e l s .  Se t t ing  qn = Kn ( A ~ 0 n - ~ 0 n )  = 0, we ob ta in  the  
second  b o u n d a r y  cond i t i on  as  n ~ oo: 

�9 0~2 

a0, ~ = Aao,~; A = -= (n-+ oo) (14) 
C6 2 

(the q u a s i s t a t i o n a r y  d i s t r i b u t i o n  i s  a B o l t z m a n n  d i s t r i b u t i o n  Son at  the u p p e r  l e v e l s  s i n c e  the t r a n s i t i o n  
v e l o c i t i e s  a t  s u f f i c i e n t l y  high l e v e l s  a r e  d e t e r m i n e d  only by e l e c t r o n  p r o c e s s e s ) .  

The  e x p r e s s i o n  (14) is  a p p l i c a b l e  in p r a c t i c e  f o r  n > ~ = ( I / T e )  1/2. 

I t  i s  p o s s i b l e  to s i m p l i f y  (125 i f  i t  i s  t aken  into accoun t  tha t  the s o u r c e  qn i s  l oc a t e d  a t  the u p p e r  
l e v e l s  (n > n5 and the f u n d a m e n t a l  e l e c t r o n  t i m e  i s  e x p e n d e d  in m o t i o n  at  the low l e v e l s .  Th i s  a f f o r d s  a 
founda t ion  fo r  not c o n s i d e r i n g  the s o u r c e  d i s t r i b u t i o n  qn = q (n) but  to c o n c e n t r a t e  i t  a t  the u p p e r  l e v e l s  (n >> n), 
i : e . ,  a c t u a l l y  to c o m b i n e  i t  wi th  the u p p e r  b o u n d a r i e s .  If the s o u r c e  m a k e s  the t r a n s i t i o n  to the b o u n d a r y ,  
then  we should  s e t  qn = 0 in the equat ion .  In th i s  c a s e  the c u r r e n t  o v e r  the l e v e l s  t u r n s  out  to be c o n s t a n t ,  
i . e . ,  Jn = -(Dnc~0n)' + Una0n = J = c o n s t  and we ob ta in  a f i r s t - o r d e r  equa t ion  in p l a c e  of (12) which  i t  i s  
c o n v e n i e n t  to r e p r e s e n t  a s  

~ -  ~0,,~/~0,~ = - ]  (15) 

in  t e r m s  of the v a r i a b l e  

~o,~ ~ ao,~DT~, (16) 

and the so lu t i on  ~0n of (15) fo r  z e r o  c u r r e n t  (j = 0) wi th  the b o u n d a r y  cond i t i on  ~0n = ~0n as  n ~ oo. 

The  so lu t i on  of (15) wi th  the a b o v e - m e n t i o n e d  bounda ry  cond i t i ons  iS 

n 

w h e r e  

i =  - ( A -  I) dt~/l(o. (185 
t l  o 

is the total (effective) current. Under quasistationary conditions, the lower limit can be extended to 

n o = 2, and even to n o = 1 for constant current. 

Pitaevskii obtained a solution of an equation of the type (15) with j = const and for A >> 1 (under strong 

recombination conditions5. As is easy to see, his solution corresponds to neglecting the ionization current 

(the second member in (18)) or the boundary conditions o~0n = 0 for n = n o in place of the more common (13). 

It  should  be k e p t  in mind  tha t  s e p a r a t i o n  of the c u r r e n t  into i o n i z a t i o n  and r e c o m b i n a t i o n  c u r r e n t s  i s  i m -  
p o s s i b l e  in the g e n e r a l  c a s e  fo r  f in i te  A. 

The  so lu t i on  (17) i s  m o r e  g e n e r a l .  The  d e p e n d e n c e  on the d e n s i t y  i s  con t a ined  t h e r e i n  in t e r m s  of the 
d r i f t  and d i f fu s ion  c o e f f i c i e n t s  ( taking accoun t  of  the  r a d i a t i o n  t r a n s i t i o n s  in e x a c t  f o rm) .  It i s  a p p l i c a b l e  
down to the  l o w e s t  l e v e l s  b e c a u s e  of  t ak ing  a c c oun t  of  the d e p e n d e n c e s  of  the d i f fus ion  equa t ion  p a r a m e t e r s  
on n e x a c t l y ,  which  i s  qu i te  i m p o r t a n t ,  a s  w i l l  l a t e r  be c l e a r ,  s i n c e  such  l e v e l s  fo r  which  i t  i s  i m p o s s i b l e  
to use  the l i m i t  e x p r e s s i o n  of the d i f fus ion  c o e f f i c i e n t  (as n ~ oo) y i e l d  a c o n t r i b u t i o n  to the r e c o m b i n a t i o n  
c u r r e n t .  

The  r e s u l t s  of  a c o m p u t a t i o n  a r e  p r e s e n t e d  in F ig .  1 in the f o r m  of the r a t i o  "y = t i p / f i T  be tween  the 
r e c o m b i n a t i o n  c o e f f i c i e n t  t ip ob ta ined  by P i t a e v s k i i  a s  N e ~ ~ and wi th  the l i m i t  d e p e n d e n c e  D n ~ n 4 and 
the r e c o m b i n a t i o n  c o e f f i c i e n t / ~ T  ob ta ined  by m e a n s  of  (18) wi th  the e x a c t  d e p e n d e n c e  of D n on n and t ak ing  
a c c o u n t  of  the r a d i a t i o n  t r a n s i t i o n s .  Such a mode  of  r e p r e s e n t i n g  the r e s u l t s  i s  c o n v e n i e n t  in tha t  i t  does  
not  con t a in  a n u m e r i c a l  f a c t o r  in the d i f fus ion  c o e f f i c i e n t  (upon a g r e e m e n t  of  the c o o r d i n a t e  d e p e n d e n c e s  of 
the e x p r e s s i o n  p r e s e n t e d  h e r e  and the c l a s s i c a l  e x p r e s s i o n  f o r  the P i t a e v s k i i  d i f fus ion  c o e f f i c i e n t  a s  n ~ oo, 
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Fig. 1. Tempera ture  dependence of the co r rec t ion  factor  to the 
Pitaevskii  recombinat ion coefficient. The curve 7 cor responds  
to the quasis ta t ionary distr ibution ~n and the curve 7l to the 
Boltzmann distribution. The dashed curves  are  the appropriate  
Bates results .  

the numerica l  factor  in this la t ter  is divided by four). The graphs represen t  the temperature  dependence 
~Y(Te) for  diverse fixed electron concentrat ions N e = c~N (N is presented in the units 1016 cm -3 so that N1 
= N. 10-16). The Pitaevskii  resul t  cor responds  to the limit N ~ ~ and is real ized in pract ice  for N1 > 103. 
The rat io between the recombination coefficient obtained by means of (18), with the quasis tat ionary d is -  
tribution a0n replaced by a Boltzmann distribution O~0n applicable for  a dense p lasma,  is presented for the 
same concentrat ion values for comparison.  The corresponding curves  are  denoted by Yl. The magnitude 
of the cur ren t  depends on the population Son and the diffusion coefficient D n. 

The recombinat ion coefficient obtained by the method considered here turns out to be less than the 
Pitaevskii  value. It is essent ia l  that the recombinat ion coefficient remain  approximately one-half  the 
Pitaevskii  value even at comparat ively  low tempera tures  (T e ~ 0.1 eV) when the diffusion method is ap-  
plicable in the Fokker  - P l a n c k  form. This difference is due to the application of the limit express ion for 
the diffusion coefficient (Dn ~ n4), which is suitable only for high levels (for n >>n 2/3) while the domain 
n < n in which the exponent is on the o rder  of one yields the main contribution to the cu r ren t  i n t eg ra l  This 
c i rcumstance  is i l lustrated in Fig. 2, where it is shown how the cur ren t  integral  (sum) sl is collected at the 
upper limit n. The curves  s 2 yields the Pitaevskii  integral  for  the same values of fl = xl~ Let us note that 
the maximum of the integrand in the Pitaevskii  form holds for n = n/~/3 < n, which indicates the inappli- 
cabili ty of the limit express ion for  the diffusion coefficient. As a rule,  up to 90-95% is collected up to 90- 
95% for n _< n, and s 2 up to 85-90%. As an est imate  shows, the limit express ion for  the diffusion coefficient 
can be used only at the tempera tures  T e < 100-150~ (the est imate of the level range is given above). 

The dashed curves  in Fig. 1 i l lustrate the Bates resul ts  [5] obtained by numerica l  solution of the s y s -  
tem of kinetic equations (4) with a finite number of levels (quasistationary version).  These resul ts  have 
been obtained with a different express ion  for  the transi t ion velocity,  hence for compar ison  they are  normal -  
ized to the value obtained here  for  T e ~ 1 eV, where the cor rec t ion  coefficient turns out to be on the o rder  
of 1. The maximum values of the cor rec t ion  coefficients agree ,  in pract ice ,  for all concentrat ions ,  and the 
posit ions of the maximums diverge somewhat. Quasistat ionari ty is spoiled for  T e > 0.7 eV so that the 
recombinat ion coefficient  is not representa t ive  in this domain. 

It is interest ing to note the following. The exact express ion for  the cur ren t  in the stat ionary model 
is obtained f rom (12) as 

]~ = -- i q,fln = - - i  K :  (A~ .o~-  %n)dn.  (19) 
n n 

For  the total capture rate we obtain 

q = ~ I(,,7(A%~ -- ao,~) an = -- ]~ (no). (20) 
t l  o 
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Fig. 2. Dependence of the cur ren t  normalized to one on the 
upper limit of the integral  (sum). The curve s 1 is the integral  
in the form (18) while the curve s 2 is the Pitaevskii  integral.  

fl = I / T  e. 

Since the contribution to the cur ren t  is slight for n >>~, let us l imit ourselves  approximately to 
integration to n = n, which Hinnov and Hi rschberg  [6] used to evaluate the recombination coefficient by 
means  of the formula  

]rec= .i' K~A(zo~dn (21) 
n0 

with the integral  also replaced by a sum at the lower levels. Their  resul ts  for a dense plasma agree with 
the Pitaevskii  resul ts  to the accuracy  of a numerical  factor  of ~0.5. Although it is impossible to consider  
such resul ts  sufficiently exact (the model selection of the upper limit), their  method yields a numerical  
resul t  which praet ical ty  agrees  with that obtained here (in the dense plasma limit). Let us emphasize that 
the agreement  between the tempera ture  dependences of the recombinat ion coefficient in the Hinnov- I - I i r seh-  
berg  and Pitaevskii  methods (the formulas  for the computation are completely different) is random and 
related to the specific dependence of the diffusion coefficient on n (D n ~ n 4) and the ionization rate K~ ~ n 2 
(the exponents in these express ions  just  influence the numerica l  factor). 

The fact that the express ion (18) for the cur ren t  differs in form from the exact express ion (19) sug-  
gests  the need to solve the exact s tat ionary (second-order)  diffusion equation in place of the approximate 
( f i rs t -order)  equation. However,  because of the modeling of the s tat ionary problem it is not c lear  in 
advance whether the resul ts  are  improved. 

Let us note that an attempt to c o r r e c t  the Pitaevskii  resul ts  by a summation over  d iscre te  levels 
(for extension to high temperatures)  was made by Biberman et al. [7], where only the transit ion n = 1 -~ 2 
was realized.  It is impossible to extend the cur ren t  integral  in the Pitaevskii  form (even represented as a 
sum) to the low levels for  the reasons  mentioned above, hence,  the mentioned cor rec t ion  is qualitative 
(interpolational) in charac te r .  
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